Description: If A is open, then A is open in the restriction to itself. (Contributed by Glauco Siliprandi, 21-Dec-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | restopn3 | |- ( ( J e. Top /\ A e. J ) -> A e. ( J |`t A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr | |- ( ( J e. Top /\ A e. J ) -> A e. J ) |
|
| 2 | ssidd | |- ( ( J e. Top /\ A e. J ) -> A C_ A ) |
|
| 3 | restopn2 | |- ( ( J e. Top /\ A e. J ) -> ( A e. ( J |`t A ) <-> ( A e. J /\ A C_ A ) ) ) |
|
| 4 | 1 2 3 | mpbir2and | |- ( ( J e. Top /\ A e. J ) -> A e. ( J |`t A ) ) |