Metamath Proof Explorer


Theorem resvcmn

Description: Scalar restriction preserves commutative monoids. (Contributed by Thierry Arnoux, 6-Sep-2018)

Ref Expression
Hypothesis resvbas.1
|- H = ( G |`v A )
Assertion resvcmn
|- ( A e. V -> ( G e. CMnd <-> H e. CMnd ) )

Proof

Step Hyp Ref Expression
1 resvbas.1
 |-  H = ( G |`v A )
2 eqidd
 |-  ( A e. V -> ( Base ` G ) = ( Base ` G ) )
3 eqid
 |-  ( Base ` G ) = ( Base ` G )
4 1 3 resvbas
 |-  ( A e. V -> ( Base ` G ) = ( Base ` H ) )
5 eqid
 |-  ( +g ` G ) = ( +g ` G )
6 1 5 resvplusg
 |-  ( A e. V -> ( +g ` G ) = ( +g ` H ) )
7 6 oveqdr
 |-  ( ( A e. V /\ ( x e. ( Base ` G ) /\ y e. ( Base ` G ) ) ) -> ( x ( +g ` G ) y ) = ( x ( +g ` H ) y ) )
8 2 4 7 cmnpropd
 |-  ( A e. V -> ( G e. CMnd <-> H e. CMnd ) )