Description: Scalar restriction preserves commutative monoids. (Contributed by Thierry Arnoux, 6-Sep-2018)
Ref | Expression | ||
---|---|---|---|
Hypothesis | resvbas.1 | |- H = ( G |`v A ) |
|
Assertion | resvcmn | |- ( A e. V -> ( G e. CMnd <-> H e. CMnd ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | resvbas.1 | |- H = ( G |`v A ) |
|
2 | eqidd | |- ( A e. V -> ( Base ` G ) = ( Base ` G ) ) |
|
3 | eqid | |- ( Base ` G ) = ( Base ` G ) |
|
4 | 1 3 | resvbas | |- ( A e. V -> ( Base ` G ) = ( Base ` H ) ) |
5 | eqid | |- ( +g ` G ) = ( +g ` G ) |
|
6 | 1 5 | resvplusg | |- ( A e. V -> ( +g ` G ) = ( +g ` H ) ) |
7 | 6 | oveqdr | |- ( ( A e. V /\ ( x e. ( Base ` G ) /\ y e. ( Base ` G ) ) ) -> ( x ( +g ` G ) y ) = ( x ( +g ` H ) y ) ) |
8 | 2 4 7 | cmnpropd | |- ( A e. V -> ( G e. CMnd <-> H e. CMnd ) ) |