Description: Formula-building rule for restricted existential quantifier (deduction form). (Contributed by NM, 13-Nov-2004) Reduce axiom usage. (Revised by Wolf Lammen, 14-Jan-2023)
Ref | Expression | ||
---|---|---|---|
Hypothesis | reubidva.1 | |- ( ( ph /\ x e. A ) -> ( ps <-> ch ) ) |
|
Assertion | reubidva | |- ( ph -> ( E! x e. A ps <-> E! x e. A ch ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | reubidva.1 | |- ( ( ph /\ x e. A ) -> ( ps <-> ch ) ) |
|
2 | 1 | pm5.32da | |- ( ph -> ( ( x e. A /\ ps ) <-> ( x e. A /\ ch ) ) ) |
3 | 2 | eubidv | |- ( ph -> ( E! x ( x e. A /\ ps ) <-> E! x ( x e. A /\ ch ) ) ) |
4 | df-reu | |- ( E! x e. A ps <-> E! x ( x e. A /\ ps ) ) |
|
5 | df-reu | |- ( E! x e. A ch <-> E! x ( x e. A /\ ch ) ) |
|
6 | 3 4 5 | 3bitr4g | |- ( ph -> ( E! x e. A ps <-> E! x e. A ch ) ) |