Metamath Proof Explorer


Theorem reubidva

Description: Formula-building rule for restricted existential quantifier (deduction form). (Contributed by NM, 13-Nov-2004) Reduce axiom usage. (Revised by Wolf Lammen, 14-Jan-2023)

Ref Expression
Hypothesis reubidva.1
|- ( ( ph /\ x e. A ) -> ( ps <-> ch ) )
Assertion reubidva
|- ( ph -> ( E! x e. A ps <-> E! x e. A ch ) )

Proof

Step Hyp Ref Expression
1 reubidva.1
 |-  ( ( ph /\ x e. A ) -> ( ps <-> ch ) )
2 1 pm5.32da
 |-  ( ph -> ( ( x e. A /\ ps ) <-> ( x e. A /\ ch ) ) )
3 2 eubidv
 |-  ( ph -> ( E! x ( x e. A /\ ps ) <-> E! x ( x e. A /\ ch ) ) )
4 df-reu
 |-  ( E! x e. A ps <-> E! x ( x e. A /\ ps ) )
5 df-reu
 |-  ( E! x e. A ch <-> E! x ( x e. A /\ ch ) )
6 3 4 5 3bitr4g
 |-  ( ph -> ( E! x e. A ps <-> E! x e. A ch ) )