Description: Inference adding restricted existential quantifier to both sides of an equivalence. (Contributed by NM, 23-Nov-1994) (Revised by Mario Carneiro, 17-Oct-2016) (Proof shortened by Wolf Lammen, 6-Dec-2019)
Ref | Expression | ||
---|---|---|---|
Hypothesis | rexbii.1 | |- ( ph <-> ps ) |
|
Assertion | rexbii | |- ( E. x e. A ph <-> E. x e. A ps ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rexbii.1 | |- ( ph <-> ps ) |
|
2 | 1 | a1i | |- ( x e. A -> ( ph <-> ps ) ) |
3 | 2 | rexbiia | |- ( E. x e. A ph <-> E. x e. A ps ) |