Metamath Proof Explorer


Theorem rexeqbidv

Description: Equality deduction for restricted universal quantifier. (Contributed by NM, 6-Nov-2007) Remove usage of ax-10 , ax-11 , and ax-12 and reduce distinct variable conditions. (Revised by Steven Nguyen, 30-Apr-2023)

Ref Expression
Hypotheses raleqbidv.1
|- ( ph -> A = B )
raleqbidv.2
|- ( ph -> ( ps <-> ch ) )
Assertion rexeqbidv
|- ( ph -> ( E. x e. A ps <-> E. x e. B ch ) )

Proof

Step Hyp Ref Expression
1 raleqbidv.1
 |-  ( ph -> A = B )
2 raleqbidv.2
 |-  ( ph -> ( ps <-> ch ) )
3 1 eleq2d
 |-  ( ph -> ( x e. A <-> x e. B ) )
4 3 2 anbi12d
 |-  ( ph -> ( ( x e. A /\ ps ) <-> ( x e. B /\ ch ) ) )
5 4 rexbidv2
 |-  ( ph -> ( E. x e. A ps <-> E. x e. B ch ) )