Metamath Proof Explorer


Theorem rexlimdvaa

Description: Inference from Theorem 19.23 of Margaris p. 90 (restricted quantifier version). (Contributed by Mario Carneiro, 15-Jun-2016)

Ref Expression
Hypothesis rexlimdvaa.1
|- ( ( ph /\ ( x e. A /\ ps ) ) -> ch )
Assertion rexlimdvaa
|- ( ph -> ( E. x e. A ps -> ch ) )

Proof

Step Hyp Ref Expression
1 rexlimdvaa.1
 |-  ( ( ph /\ ( x e. A /\ ps ) ) -> ch )
2 1 expr
 |-  ( ( ph /\ x e. A ) -> ( ps -> ch ) )
3 2 rexlimdva
 |-  ( ph -> ( E. x e. A ps -> ch ) )