Metamath Proof Explorer


Theorem rexlimiv

Description: Inference from Theorem 19.23 of Margaris p. 90. (Restricted quantifier version.) (Contributed by NM, 20-Nov-1994) Reduce dependencies on axioms. (Revised by Wolf Lammen, 14-Jan-2020)

Ref Expression
Hypothesis rexlimiv.1
|- ( x e. A -> ( ph -> ps ) )
Assertion rexlimiv
|- ( E. x e. A ph -> ps )

Proof

Step Hyp Ref Expression
1 rexlimiv.1
 |-  ( x e. A -> ( ph -> ps ) )
2 1 rgen
 |-  A. x e. A ( ph -> ps )
3 r19.23v
 |-  ( A. x e. A ( ph -> ps ) <-> ( E. x e. A ph -> ps ) )
4 2 3 mpbi
 |-  ( E. x e. A ph -> ps )