Metamath Proof Explorer


Theorem rgen

Description: Generalization rule for restricted quantification. (Contributed by NM, 19-Nov-1994)

Ref Expression
Hypothesis rgen.1
|- ( x e. A -> ph )
Assertion rgen
|- A. x e. A ph

Proof

Step Hyp Ref Expression
1 rgen.1
 |-  ( x e. A -> ph )
2 df-ral
 |-  ( A. x e. A ph <-> A. x ( x e. A -> ph ) )
3 2 1 mpgbir
 |-  A. x e. A ph