Metamath Proof Explorer


Theorem rightirr

Description: No surreal is a member of its right set. (Contributed by Scott Fenton, 9-Oct-2024)

Ref Expression
Assertion rightirr
|- -. X e. ( _R ` X )

Proof

Step Hyp Ref Expression
1 oldirr
 |-  -. X e. ( _Old ` ( bday ` X ) )
2 rightssold
 |-  ( _R ` X ) C_ ( _Old ` ( bday ` X ) )
3 2 sseli
 |-  ( X e. ( _R ` X ) -> X e. ( _Old ` ( bday ` X ) ) )
4 1 3 mto
 |-  -. X e. ( _R ` X )