Step |
Hyp |
Ref |
Expression |
1 |
|
ringcco.c |
|- C = ( RingCat ` U ) |
2 |
|
ringcco.u |
|- ( ph -> U e. V ) |
3 |
|
ringcco.o |
|- .x. = ( comp ` C ) |
4 |
|
ringcco.x |
|- ( ph -> X e. U ) |
5 |
|
ringcco.y |
|- ( ph -> Y e. U ) |
6 |
|
ringcco.z |
|- ( ph -> Z e. U ) |
7 |
|
ringcco.f |
|- ( ph -> F : ( Base ` X ) --> ( Base ` Y ) ) |
8 |
|
ringcco.g |
|- ( ph -> G : ( Base ` Y ) --> ( Base ` Z ) ) |
9 |
1 2 3
|
ringccofval |
|- ( ph -> .x. = ( comp ` ( ExtStrCat ` U ) ) ) |
10 |
9
|
oveqd |
|- ( ph -> ( <. X , Y >. .x. Z ) = ( <. X , Y >. ( comp ` ( ExtStrCat ` U ) ) Z ) ) |
11 |
10
|
oveqd |
|- ( ph -> ( G ( <. X , Y >. .x. Z ) F ) = ( G ( <. X , Y >. ( comp ` ( ExtStrCat ` U ) ) Z ) F ) ) |
12 |
|
eqid |
|- ( ExtStrCat ` U ) = ( ExtStrCat ` U ) |
13 |
|
eqid |
|- ( comp ` ( ExtStrCat ` U ) ) = ( comp ` ( ExtStrCat ` U ) ) |
14 |
|
eqid |
|- ( Base ` X ) = ( Base ` X ) |
15 |
|
eqid |
|- ( Base ` Y ) = ( Base ` Y ) |
16 |
|
eqid |
|- ( Base ` Z ) = ( Base ` Z ) |
17 |
12 2 13 4 5 6 14 15 16 7 8
|
estrcco |
|- ( ph -> ( G ( <. X , Y >. ( comp ` ( ExtStrCat ` U ) ) Z ) F ) = ( G o. F ) ) |
18 |
11 17
|
eqtrd |
|- ( ph -> ( G ( <. X , Y >. .x. Z ) F ) = ( G o. F ) ) |