Description: The unit element of a ring is a left multiplicative identity. (Contributed by NM, 15-Sep-2011)
Ref | Expression | ||
---|---|---|---|
Hypotheses | rngidm.b | |- B = ( Base ` R ) |
|
rngidm.t | |- .x. = ( .r ` R ) |
||
rngidm.u | |- .1. = ( 1r ` R ) |
||
Assertion | ringlidm | |- ( ( R e. Ring /\ X e. B ) -> ( .1. .x. X ) = X ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rngidm.b | |- B = ( Base ` R ) |
|
2 | rngidm.t | |- .x. = ( .r ` R ) |
|
3 | rngidm.u | |- .1. = ( 1r ` R ) |
|
4 | 1 2 3 | ringidmlem | |- ( ( R e. Ring /\ X e. B ) -> ( ( .1. .x. X ) = X /\ ( X .x. .1. ) = X ) ) |
5 | 4 | simpld | |- ( ( R e. Ring /\ X e. B ) -> ( .1. .x. X ) = X ) |