Metamath Proof Explorer


Theorem riotaex

Description: Restricted iota is a set. (Contributed by NM, 15-Sep-2011)

Ref Expression
Assertion riotaex
|- ( iota_ x e. A ps ) e. _V

Proof

Step Hyp Ref Expression
1 df-riota
 |-  ( iota_ x e. A ps ) = ( iota x ( x e. A /\ ps ) )
2 iotaex
 |-  ( iota x ( x e. A /\ ps ) ) e. _V
3 1 2 eqeltri
 |-  ( iota_ x e. A ps ) e. _V