Metamath Proof Explorer


Theorem rlmbas

Description: Base set of the ring module. (Contributed by Stefan O'Rear, 31-Mar-2015)

Ref Expression
Assertion rlmbas
|- ( Base ` R ) = ( Base ` ( ringLMod ` R ) )

Proof

Step Hyp Ref Expression
1 rlmval
 |-  ( ringLMod ` R ) = ( ( subringAlg ` R ) ` ( Base ` R ) )
2 1 a1i
 |-  ( T. -> ( ringLMod ` R ) = ( ( subringAlg ` R ) ` ( Base ` R ) ) )
3 ssidd
 |-  ( T. -> ( Base ` R ) C_ ( Base ` R ) )
4 2 3 srabase
 |-  ( T. -> ( Base ` R ) = ( Base ` ( ringLMod ` R ) ) )
5 4 mptru
 |-  ( Base ` R ) = ( Base ` ( ringLMod ` R ) )