Description: Equality theorem for restricted at-most-one quantifier, with bound-variable hypotheses instead of distinct variable restrictions. (Contributed by Alexander van der Vekens, 17-Jun-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rmoeq1f.1 | |- F/_ x A |
|
| rmoeq1f.2 | |- F/_ x B |
||
| Assertion | rmoeq1f | |- ( A = B -> ( E* x e. A ph <-> E* x e. B ph ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rmoeq1f.1 | |- F/_ x A |
|
| 2 | rmoeq1f.2 | |- F/_ x B |
|
| 3 | 1 2 | nfeq | |- F/ x A = B |
| 4 | eleq2 | |- ( A = B -> ( x e. A <-> x e. B ) ) |
|
| 5 | 4 | anbi1d | |- ( A = B -> ( ( x e. A /\ ph ) <-> ( x e. B /\ ph ) ) ) |
| 6 | 3 5 | mobid | |- ( A = B -> ( E* x ( x e. A /\ ph ) <-> E* x ( x e. B /\ ph ) ) ) |
| 7 | df-rmo | |- ( E* x e. A ph <-> E* x ( x e. A /\ ph ) ) |
|
| 8 | df-rmo | |- ( E* x e. B ph <-> E* x ( x e. B /\ ph ) ) |
|
| 9 | 6 7 8 | 3bitr4g | |- ( A = B -> ( E* x e. A ph <-> E* x e. B ph ) ) |