Metamath Proof Explorer


Theorem rmoeq1f

Description: Equality theorem for restricted at-most-one quantifier, with bound-variable hypotheses instead of distinct variable restrictions. (Contributed by Alexander van der Vekens, 17-Jun-2017)

Ref Expression
Hypotheses raleq1f.1
|- F/_ x A
raleq1f.2
|- F/_ x B
Assertion rmoeq1f
|- ( A = B -> ( E* x e. A ph <-> E* x e. B ph ) )

Proof

Step Hyp Ref Expression
1 raleq1f.1
 |-  F/_ x A
2 raleq1f.2
 |-  F/_ x B
3 1 2 nfeq
 |-  F/ x A = B
4 eleq2
 |-  ( A = B -> ( x e. A <-> x e. B ) )
5 4 anbi1d
 |-  ( A = B -> ( ( x e. A /\ ph ) <-> ( x e. B /\ ph ) ) )
6 3 5 mobid
 |-  ( A = B -> ( E* x ( x e. A /\ ph ) <-> E* x ( x e. B /\ ph ) ) )
7 df-rmo
 |-  ( E* x e. A ph <-> E* x ( x e. A /\ ph ) )
8 df-rmo
 |-  ( E* x e. B ph <-> E* x ( x e. B /\ ph ) )
9 6 7 8 3bitr4g
 |-  ( A = B -> ( E* x e. A ph <-> E* x e. B ph ) )