Description: A non-unital ring is an (additive) abelian group. (Contributed by AV, 17-Feb-2020)
Ref | Expression | ||
---|---|---|---|
Assertion | rngabl | |- ( R e. Rng -> R e. Abel ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid | |- ( Base ` R ) = ( Base ` R ) |
|
2 | eqid | |- ( mulGrp ` R ) = ( mulGrp ` R ) |
|
3 | eqid | |- ( +g ` R ) = ( +g ` R ) |
|
4 | eqid | |- ( .r ` R ) = ( .r ` R ) |
|
5 | 1 2 3 4 | isrng | |- ( R e. Rng <-> ( R e. Abel /\ ( mulGrp ` R ) e. Smgrp /\ A. x e. ( Base ` R ) A. y e. ( Base ` R ) A. z e. ( Base ` R ) ( ( x ( .r ` R ) ( y ( +g ` R ) z ) ) = ( ( x ( .r ` R ) y ) ( +g ` R ) ( x ( .r ` R ) z ) ) /\ ( ( x ( +g ` R ) y ) ( .r ` R ) z ) = ( ( x ( .r ` R ) z ) ( +g ` R ) ( y ( .r ` R ) z ) ) ) ) ) |
6 | 5 | simp1bi | |- ( R e. Rng -> R e. Abel ) |