Metamath Proof Explorer


Theorem rngabl

Description: A non-unital ring is an (additive) abelian group. (Contributed by AV, 17-Feb-2020)

Ref Expression
Assertion rngabl
|- ( R e. Rng -> R e. Abel )

Proof

Step Hyp Ref Expression
1 eqid
 |-  ( Base ` R ) = ( Base ` R )
2 eqid
 |-  ( mulGrp ` R ) = ( mulGrp ` R )
3 eqid
 |-  ( +g ` R ) = ( +g ` R )
4 eqid
 |-  ( .r ` R ) = ( .r ` R )
5 1 2 3 4 isrng
 |-  ( R e. Rng <-> ( R e. Abel /\ ( mulGrp ` R ) e. Smgrp /\ A. x e. ( Base ` R ) A. y e. ( Base ` R ) A. z e. ( Base ` R ) ( ( x ( .r ` R ) ( y ( +g ` R ) z ) ) = ( ( x ( .r ` R ) y ) ( +g ` R ) ( x ( .r ` R ) z ) ) /\ ( ( x ( +g ` R ) y ) ( .r ` R ) z ) = ( ( x ( .r ` R ) z ) ( +g ` R ) ( y ( .r ` R ) z ) ) ) ) )
6 5 simp1bi
 |-  ( R e. Rng -> R e. Abel )