Metamath Proof Explorer


Theorem rngstr

Description: A constructed ring is a structure. (Contributed by Mario Carneiro, 28-Sep-2013) (Revised by Mario Carneiro, 29-Aug-2015)

Ref Expression
Hypothesis rngfn.r
|- R = { <. ( Base ` ndx ) , B >. , <. ( +g ` ndx ) , .+ >. , <. ( .r ` ndx ) , .x. >. }
Assertion rngstr
|- R Struct <. 1 , 3 >.

Proof

Step Hyp Ref Expression
1 rngfn.r
 |-  R = { <. ( Base ` ndx ) , B >. , <. ( +g ` ndx ) , .+ >. , <. ( .r ` ndx ) , .x. >. }
2 1nn
 |-  1 e. NN
3 basendx
 |-  ( Base ` ndx ) = 1
4 1lt2
 |-  1 < 2
5 2nn
 |-  2 e. NN
6 plusgndx
 |-  ( +g ` ndx ) = 2
7 2lt3
 |-  2 < 3
8 3nn
 |-  3 e. NN
9 mulrndx
 |-  ( .r ` ndx ) = 3
10 2 3 4 5 6 7 8 9 strle3
 |-  { <. ( Base ` ndx ) , B >. , <. ( +g ` ndx ) , .+ >. , <. ( .r ` ndx ) , .x. >. } Struct <. 1 , 3 >.
11 1 10 eqbrtri
 |-  R Struct <. 1 , 3 >.