Description: The range of a function given by the maps-to notation as a subset. (Contributed by Glauco Siliprandi, 24-Jan-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rnmptssdff.1 | |- F/ x ph |
|
| rnmptssdff.2 | |- F/_ x A |
||
| rnmptssdff.3 | |- F/_ x C |
||
| rnmptssdff.4 | |- F = ( x e. A |-> B ) |
||
| rnmptssdff.5 | |- ( ( ph /\ x e. A ) -> B e. C ) |
||
| Assertion | rnmptssdff | |- ( ph -> ran F C_ C ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rnmptssdff.1 | |- F/ x ph |
|
| 2 | rnmptssdff.2 | |- F/_ x A |
|
| 3 | rnmptssdff.3 | |- F/_ x C |
|
| 4 | rnmptssdff.4 | |- F = ( x e. A |-> B ) |
|
| 5 | rnmptssdff.5 | |- ( ( ph /\ x e. A ) -> B e. C ) |
|
| 6 | 1 5 | ralrimia | |- ( ph -> A. x e. A B e. C ) |
| 7 | 2 3 4 | rnmptssff | |- ( A. x e. A B e. C -> ran F C_ C ) |
| 8 | 6 7 | syl | |- ( ph -> ran F C_ C ) |