Metamath Proof Explorer


Theorem rnmptssrn

Description: Inclusion relation for two ranges expressed in maps-to notation. (Contributed by Glauco Siliprandi, 17-Aug-2020)

Ref Expression
Hypotheses rnmptssrn.b
|- ( ( ph /\ x e. A ) -> B e. V )
rnmptssrn.y
|- ( ( ph /\ x e. A ) -> E. y e. C B = D )
Assertion rnmptssrn
|- ( ph -> ran ( x e. A |-> B ) C_ ran ( y e. C |-> D ) )

Proof

Step Hyp Ref Expression
1 rnmptssrn.b
 |-  ( ( ph /\ x e. A ) -> B e. V )
2 rnmptssrn.y
 |-  ( ( ph /\ x e. A ) -> E. y e. C B = D )
3 eqid
 |-  ( y e. C |-> D ) = ( y e. C |-> D )
4 3 2 1 elrnmptd
 |-  ( ( ph /\ x e. A ) -> B e. ran ( y e. C |-> D ) )
5 4 ralrimiva
 |-  ( ph -> A. x e. A B e. ran ( y e. C |-> D ) )
6 eqid
 |-  ( x e. A |-> B ) = ( x e. A |-> B )
7 6 rnmptss
 |-  ( A. x e. A B e. ran ( y e. C |-> D ) -> ran ( x e. A |-> B ) C_ ran ( y e. C |-> D ) )
8 5 7 syl
 |-  ( ph -> ran ( x e. A |-> B ) C_ ran ( y e. C |-> D ) )