Description: A positive real is real and greater than or equal to zero. (Contributed by Mario Carneiro, 28-May-2016)
Ref | Expression | ||
---|---|---|---|
Hypothesis | rpred.1 | |- ( ph -> A e. RR+ ) |
|
Assertion | rprege0d | |- ( ph -> ( A e. RR /\ 0 <_ A ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rpred.1 | |- ( ph -> A e. RR+ ) |
|
2 | 1 | rpred | |- ( ph -> A e. RR ) |
3 | 1 | rpge0d | |- ( ph -> 0 <_ A ) |
4 | 2 3 | jca | |- ( ph -> ( A e. RR /\ 0 <_ A ) ) |