Description: A ring prime element does not divide the ring multiplicative identity. (Contributed by Thierry Arnoux, 18-May-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rprmndvdsr1.1 | |- .1. = ( 1r ` R ) |
|
| rprmndvdsr1.2 | |- .|| = ( ||r ` R ) |
||
| rprmndvdsr1.3 | |- P = ( RPrime ` R ) |
||
| rprmndvdsr1.4 | |- ( ph -> R e. CRing ) |
||
| rprmndvdsr1.5 | |- ( ph -> Q e. P ) |
||
| Assertion | rprmndvdsr1 | |- ( ph -> -. Q .|| .1. ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rprmndvdsr1.1 | |- .1. = ( 1r ` R ) |
|
| 2 | rprmndvdsr1.2 | |- .|| = ( ||r ` R ) |
|
| 3 | rprmndvdsr1.3 | |- P = ( RPrime ` R ) |
|
| 4 | rprmndvdsr1.4 | |- ( ph -> R e. CRing ) |
|
| 5 | rprmndvdsr1.5 | |- ( ph -> Q e. P ) |
|
| 6 | eqid | |- ( Unit ` R ) = ( Unit ` R ) |
|
| 7 | 3 6 4 5 | rprmnunit | |- ( ph -> -. Q e. ( Unit ` R ) ) |
| 8 | 6 1 2 | crngunit | |- ( R e. CRing -> ( Q e. ( Unit ` R ) <-> Q .|| .1. ) ) |
| 9 | 4 8 | syl | |- ( ph -> ( Q e. ( Unit ` R ) <-> Q .|| .1. ) ) |
| 10 | 7 9 | mtbid | |- ( ph -> -. Q .|| .1. ) |