Metamath Proof Explorer


Theorem s1cl

Description: A singleton word is a word. (Contributed by Stefan O'Rear, 15-Aug-2015) (Revised by Mario Carneiro, 26-Feb-2016) (Proof shortened by AV, 23-Nov-2018)

Ref Expression
Assertion s1cl
|- ( A e. B -> <" A "> e. Word B )

Proof

Step Hyp Ref Expression
1 s1val
 |-  ( A e. B -> <" A "> = { <. 0 , A >. } )
2 snopiswrd
 |-  ( A e. B -> { <. 0 , A >. } e. Word B )
3 1 2 eqeltrd
 |-  ( A e. B -> <" A "> e. Word B )