Description: Equality theorem for a length 4 word. (Contributed by Mario Carneiro, 27-Feb-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | s2eqd.1 | |- ( ph -> A = N ) | |
| s2eqd.2 | |- ( ph -> B = O ) | ||
| s3eqd.3 | |- ( ph -> C = P ) | ||
| s4eqd.4 | |- ( ph -> D = Q ) | ||
| Assertion | s4eqd | |- ( ph -> <" A B C D "> = <" N O P Q "> ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | s2eqd.1 | |- ( ph -> A = N ) | |
| 2 | s2eqd.2 | |- ( ph -> B = O ) | |
| 3 | s3eqd.3 | |- ( ph -> C = P ) | |
| 4 | s4eqd.4 | |- ( ph -> D = Q ) | |
| 5 | 1 2 3 | s3eqd | |- ( ph -> <" A B C "> = <" N O P "> ) | 
| 6 | 4 | s1eqd | |- ( ph -> <" D "> = <" Q "> ) | 
| 7 | 5 6 | oveq12d | |- ( ph -> ( <" A B C "> ++ <" D "> ) = ( <" N O P "> ++ <" Q "> ) ) | 
| 8 | df-s4 | |- <" A B C D "> = ( <" A B C "> ++ <" D "> ) | |
| 9 | df-s4 | |- <" N O P Q "> = ( <" N O P "> ++ <" Q "> ) | |
| 10 | 7 8 9 | 3eqtr4g | |- ( ph -> <" A B C D "> = <" N O P Q "> ) |