Metamath Proof Explorer


Theorem sategoelfv

Description: Condition of a valuation S of a simplified satisfaction predicate for a Godel-set of membership: The sets in model M corresponding to the variables A and B under the assignment of S are in a membership relation in M . (Contributed by AV, 5-Nov-2023)

Ref Expression
Hypothesis sategoelfvb.s
|- E = ( M SatE ( A e.g B ) )
Assertion sategoelfv
|- ( ( M e. V /\ ( A e. _om /\ B e. _om ) /\ S e. E ) -> ( S ` A ) e. ( S ` B ) )

Proof

Step Hyp Ref Expression
1 sategoelfvb.s
 |-  E = ( M SatE ( A e.g B ) )
2 1 sategoelfvb
 |-  ( ( M e. V /\ ( A e. _om /\ B e. _om ) ) -> ( S e. E <-> ( S e. ( M ^m _om ) /\ ( S ` A ) e. ( S ` B ) ) ) )
3 simpr
 |-  ( ( S e. ( M ^m _om ) /\ ( S ` A ) e. ( S ` B ) ) -> ( S ` A ) e. ( S ` B ) )
4 2 3 syl6bi
 |-  ( ( M e. V /\ ( A e. _om /\ B e. _om ) ) -> ( S e. E -> ( S ` A ) e. ( S ` B ) ) )
5 4 3impia
 |-  ( ( M e. V /\ ( A e. _om /\ B e. _om ) /\ S e. E ) -> ( S ` A ) e. ( S ` B ) )