Metamath Proof Explorer


Theorem sbcgf

Description: Substitution for a variable not free in a wff does not affect it. (Contributed by NM, 11-Oct-2004) (Proof shortened by Andrew Salmon, 29-Jun-2011)

Ref Expression
Hypothesis sbcgf.1
|- F/ x ph
Assertion sbcgf
|- ( A e. V -> ( [. A / x ]. ph <-> ph ) )

Proof

Step Hyp Ref Expression
1 sbcgf.1
 |-  F/ x ph
2 sbctt
 |-  ( ( A e. V /\ F/ x ph ) -> ( [. A / x ]. ph <-> ph ) )
3 1 2 mpan2
 |-  ( A e. V -> ( [. A / x ]. ph <-> ph ) )