Step |
Hyp |
Ref |
Expression |
1 |
|
idn1 |
|- (. A e. B ->. A e. B ). |
2 |
|
idn2 |
|- (. A e. B ,. [. A / x ]. ( ph -> ( ps -> ch ) ) ->. [. A / x ]. ( ph -> ( ps -> ch ) ) ). |
3 |
|
sbcimg |
|- ( A e. B -> ( [. A / x ]. ( ph -> ( ps -> ch ) ) <-> ( [. A / x ]. ph -> [. A / x ]. ( ps -> ch ) ) ) ) |
4 |
3
|
biimpd |
|- ( A e. B -> ( [. A / x ]. ( ph -> ( ps -> ch ) ) -> ( [. A / x ]. ph -> [. A / x ]. ( ps -> ch ) ) ) ) |
5 |
1 2 4
|
e12 |
|- (. A e. B ,. [. A / x ]. ( ph -> ( ps -> ch ) ) ->. ( [. A / x ]. ph -> [. A / x ]. ( ps -> ch ) ) ). |
6 |
|
sbcimg |
|- ( A e. B -> ( [. A / x ]. ( ps -> ch ) <-> ( [. A / x ]. ps -> [. A / x ]. ch ) ) ) |
7 |
1 6
|
e1a |
|- (. A e. B ->. ( [. A / x ]. ( ps -> ch ) <-> ( [. A / x ]. ps -> [. A / x ]. ch ) ) ). |
8 |
|
imbi2 |
|- ( ( [. A / x ]. ( ps -> ch ) <-> ( [. A / x ]. ps -> [. A / x ]. ch ) ) -> ( ( [. A / x ]. ph -> [. A / x ]. ( ps -> ch ) ) <-> ( [. A / x ]. ph -> ( [. A / x ]. ps -> [. A / x ]. ch ) ) ) ) |
9 |
8
|
biimpcd |
|- ( ( [. A / x ]. ph -> [. A / x ]. ( ps -> ch ) ) -> ( ( [. A / x ]. ( ps -> ch ) <-> ( [. A / x ]. ps -> [. A / x ]. ch ) ) -> ( [. A / x ]. ph -> ( [. A / x ]. ps -> [. A / x ]. ch ) ) ) ) |
10 |
5 7 9
|
e21 |
|- (. A e. B ,. [. A / x ]. ( ph -> ( ps -> ch ) ) ->. ( [. A / x ]. ph -> ( [. A / x ]. ps -> [. A / x ]. ch ) ) ). |
11 |
10
|
in2 |
|- (. A e. B ->. ( [. A / x ]. ( ph -> ( ps -> ch ) ) -> ( [. A / x ]. ph -> ( [. A / x ]. ps -> [. A / x ]. ch ) ) ) ). |
12 |
|
idn2 |
|- (. A e. B ,. ( [. A / x ]. ph -> ( [. A / x ]. ps -> [. A / x ]. ch ) ) ->. ( [. A / x ]. ph -> ( [. A / x ]. ps -> [. A / x ]. ch ) ) ). |
13 |
|
biimpr |
|- ( ( [. A / x ]. ( ps -> ch ) <-> ( [. A / x ]. ps -> [. A / x ]. ch ) ) -> ( ( [. A / x ]. ps -> [. A / x ]. ch ) -> [. A / x ]. ( ps -> ch ) ) ) |
14 |
13
|
imim2d |
|- ( ( [. A / x ]. ( ps -> ch ) <-> ( [. A / x ]. ps -> [. A / x ]. ch ) ) -> ( ( [. A / x ]. ph -> ( [. A / x ]. ps -> [. A / x ]. ch ) ) -> ( [. A / x ]. ph -> [. A / x ]. ( ps -> ch ) ) ) ) |
15 |
7 12 14
|
e12 |
|- (. A e. B ,. ( [. A / x ]. ph -> ( [. A / x ]. ps -> [. A / x ]. ch ) ) ->. ( [. A / x ]. ph -> [. A / x ]. ( ps -> ch ) ) ). |
16 |
1 3
|
e1a |
|- (. A e. B ->. ( [. A / x ]. ( ph -> ( ps -> ch ) ) <-> ( [. A / x ]. ph -> [. A / x ]. ( ps -> ch ) ) ) ). |
17 |
|
biimpr |
|- ( ( [. A / x ]. ( ph -> ( ps -> ch ) ) <-> ( [. A / x ]. ph -> [. A / x ]. ( ps -> ch ) ) ) -> ( ( [. A / x ]. ph -> [. A / x ]. ( ps -> ch ) ) -> [. A / x ]. ( ph -> ( ps -> ch ) ) ) ) |
18 |
17
|
com12 |
|- ( ( [. A / x ]. ph -> [. A / x ]. ( ps -> ch ) ) -> ( ( [. A / x ]. ( ph -> ( ps -> ch ) ) <-> ( [. A / x ]. ph -> [. A / x ]. ( ps -> ch ) ) ) -> [. A / x ]. ( ph -> ( ps -> ch ) ) ) ) |
19 |
15 16 18
|
e21 |
|- (. A e. B ,. ( [. A / x ]. ph -> ( [. A / x ]. ps -> [. A / x ]. ch ) ) ->. [. A / x ]. ( ph -> ( ps -> ch ) ) ). |
20 |
19
|
in2 |
|- (. A e. B ->. ( ( [. A / x ]. ph -> ( [. A / x ]. ps -> [. A / x ]. ch ) ) -> [. A / x ]. ( ph -> ( ps -> ch ) ) ) ). |
21 |
|
impbi |
|- ( ( [. A / x ]. ( ph -> ( ps -> ch ) ) -> ( [. A / x ]. ph -> ( [. A / x ]. ps -> [. A / x ]. ch ) ) ) -> ( ( ( [. A / x ]. ph -> ( [. A / x ]. ps -> [. A / x ]. ch ) ) -> [. A / x ]. ( ph -> ( ps -> ch ) ) ) -> ( [. A / x ]. ( ph -> ( ps -> ch ) ) <-> ( [. A / x ]. ph -> ( [. A / x ]. ps -> [. A / x ]. ch ) ) ) ) ) |
22 |
11 20 21
|
e11 |
|- (. A e. B ->. ( [. A / x ]. ( ph -> ( ps -> ch ) ) <-> ( [. A / x ]. ph -> ( [. A / x ]. ps -> [. A / x ]. ch ) ) ) ). |
23 |
22
|
in1 |
|- ( A e. B -> ( [. A / x ]. ( ph -> ( ps -> ch ) ) <-> ( [. A / x ]. ph -> ( [. A / x ]. ps -> [. A / x ]. ch ) ) ) ) |