Metamath Proof Explorer


Theorem sectid

Description: The identity is a section of itself. (Contributed by AV, 8-Apr-2020)

Ref Expression
Hypotheses invid.b
|- B = ( Base ` C )
invid.i
|- I = ( Id ` C )
invid.c
|- ( ph -> C e. Cat )
invid.x
|- ( ph -> X e. B )
Assertion sectid
|- ( ph -> ( I ` X ) ( X ( Sect ` C ) X ) ( I ` X ) )

Proof

Step Hyp Ref Expression
1 invid.b
 |-  B = ( Base ` C )
2 invid.i
 |-  I = ( Id ` C )
3 invid.c
 |-  ( ph -> C e. Cat )
4 invid.x
 |-  ( ph -> X e. B )
5 eqid
 |-  ( Hom ` C ) = ( Hom ` C )
6 eqid
 |-  ( comp ` C ) = ( comp ` C )
7 1 5 2 3 4 catidcl
 |-  ( ph -> ( I ` X ) e. ( X ( Hom ` C ) X ) )
8 1 5 2 3 4 6 4 7 catlid
 |-  ( ph -> ( ( I ` X ) ( <. X , X >. ( comp ` C ) X ) ( I ` X ) ) = ( I ` X ) )
9 eqid
 |-  ( Sect ` C ) = ( Sect ` C )
10 1 5 6 2 9 3 4 4 7 7 issect2
 |-  ( ph -> ( ( I ` X ) ( X ( Sect ` C ) X ) ( I ` X ) <-> ( ( I ` X ) ( <. X , X >. ( comp ` C ) X ) ( I ` X ) ) = ( I ` X ) ) )
11 8 10 mpbird
 |-  ( ph -> ( I ` X ) ( X ( Sect ` C ) X ) ( I ` X ) )