Metamath Proof Explorer


Theorem selsALT

Description: Alternate proof of sels , requiring ax-sep but not using el (which is proved from it as elALT ). (especially when the proof of el is inlined in sels ). (Contributed by NM, 4-Jan-2002) Generalize from the proof of elALT . (Revised by BJ, 3-Apr-2019) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion selsALT
|- ( A e. V -> E. x A e. x )

Proof

Step Hyp Ref Expression
1 snidg
 |-  ( A e. V -> A e. { A } )
2 snexg
 |-  ( A e. { A } -> { A } e. _V )
3 snidg
 |-  ( A e. { A } -> A e. { A } )
4 eleq2
 |-  ( x = { A } -> ( A e. x <-> A e. { A } ) )
5 2 3 4 spcedv
 |-  ( A e. { A } -> E. x A e. x )
6 1 5 syl
 |-  ( A e. V -> E. x A e. x )