Metamath Proof Explorer


Theorem sgon

Description: A sigma-algebra is a sigma on its union set. (Contributed by Thierry Arnoux, 6-Jun-2017)

Ref Expression
Assertion sgon
|- ( S e. U. ran sigAlgebra -> S e. ( sigAlgebra ` U. S ) )

Proof

Step Hyp Ref Expression
1 eqid
 |-  U. S = U. S
2 issgon
 |-  ( S e. ( sigAlgebra ` U. S ) <-> ( S e. U. ran sigAlgebra /\ U. S = U. S ) )
3 2 biimpri
 |-  ( ( S e. U. ran sigAlgebra /\ U. S = U. S ) -> S e. ( sigAlgebra ` U. S ) )
4 1 3 mpan2
 |-  ( S e. U. ran sigAlgebra -> S e. ( sigAlgebra ` U. S ) )