Description: A sigma-algebra is a sigma on its union set. (Contributed by Thierry Arnoux, 6-Jun-2017)
Ref | Expression | ||
---|---|---|---|
Assertion | sgon | |- ( S e. U. ran sigAlgebra -> S e. ( sigAlgebra ` U. S ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid | |- U. S = U. S |
|
2 | issgon | |- ( S e. ( sigAlgebra ` U. S ) <-> ( S e. U. ran sigAlgebra /\ U. S = U. S ) ) |
|
3 | 2 | biimpri | |- ( ( S e. U. ran sigAlgebra /\ U. S = U. S ) -> S e. ( sigAlgebra ` U. S ) ) |
4 | 1 3 | mpan2 | |- ( S e. U. ran sigAlgebra -> S e. ( sigAlgebra ` U. S ) ) |