Description: Commutative law for join in SH . (Contributed by NM, 19-Oct-1999) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypotheses | shincl.1 | |- A e. SH |
|
shincl.2 | |- B e. SH |
||
Assertion | shjcomi | |- ( A vH B ) = ( B vH A ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | shincl.1 | |- A e. SH |
|
2 | shincl.2 | |- B e. SH |
|
3 | shjcom | |- ( ( A e. SH /\ B e. SH ) -> ( A vH B ) = ( B vH A ) ) |
|
4 | 1 2 3 | mp2an | |- ( A vH B ) = ( B vH A ) |