Metamath Proof Explorer


Theorem shsupunss

Description: The union of a set of subspaces is smaller than its supremum. (Contributed by NM, 26-Nov-2004) (New usage is discouraged.)

Ref Expression
Assertion shsupunss
|- ( A C_ SH -> U. A C_ ( span ` U. A ) )

Proof

Step Hyp Ref Expression
1 shsspwh
 |-  SH C_ ~P ~H
2 sstr
 |-  ( ( A C_ SH /\ SH C_ ~P ~H ) -> A C_ ~P ~H )
3 1 2 mpan2
 |-  ( A C_ SH -> A C_ ~P ~H )
4 3 unissd
 |-  ( A C_ SH -> U. A C_ U. ~P ~H )
5 unipw
 |-  U. ~P ~H = ~H
6 4 5 sseqtrdi
 |-  ( A C_ SH -> U. A C_ ~H )
7 spanss2
 |-  ( U. A C_ ~H -> U. A C_ ( span ` U. A ) )
8 6 7 syl
 |-  ( A C_ SH -> U. A C_ ( span ` U. A ) )