Metamath Proof Explorer


Theorem simp1l1

Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012)

Ref Expression
Assertion simp1l1
|- ( ( ( ( ph /\ ps /\ ch ) /\ th ) /\ ta /\ et ) -> ph )

Proof

Step Hyp Ref Expression
1 simpl1
 |-  ( ( ( ph /\ ps /\ ch ) /\ th ) -> ph )
2 1 3ad2ant1
 |-  ( ( ( ( ph /\ ps /\ ch ) /\ th ) /\ ta /\ et ) -> ph )