Metamath Proof Explorer


Theorem simp21

Description: Simplification of doubly triple conjunction. (Contributed by NM, 17-Nov-2011)

Ref Expression
Assertion simp21
|- ( ( ph /\ ( ps /\ ch /\ th ) /\ ta ) -> ps )

Proof

Step Hyp Ref Expression
1 simp1
 |-  ( ( ps /\ ch /\ th ) -> ps )
2 1 3ad2ant2
 |-  ( ( ph /\ ( ps /\ ch /\ th ) /\ ta ) -> ps )