Metamath Proof Explorer


Theorem simp21l

Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012)

Ref Expression
Assertion simp21l
|- ( ( ta /\ ( ( ph /\ ps ) /\ ch /\ th ) /\ et ) -> ph )

Proof

Step Hyp Ref Expression
1 simp1l
 |-  ( ( ( ph /\ ps ) /\ ch /\ th ) -> ph )
2 1 3ad2ant2
 |-  ( ( ta /\ ( ( ph /\ ps ) /\ ch /\ th ) /\ et ) -> ph )