Metamath Proof Explorer


Theorem simp23l

Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012)

Ref Expression
Assertion simp23l
|- ( ( ta /\ ( ch /\ th /\ ( ph /\ ps ) ) /\ et ) -> ph )

Proof

Step Hyp Ref Expression
1 simp3l
 |-  ( ( ch /\ th /\ ( ph /\ ps ) ) -> ph )
2 1 3ad2ant2
 |-  ( ( ta /\ ( ch /\ th /\ ( ph /\ ps ) ) /\ et ) -> ph )