Metamath Proof Explorer


Theorem simp2r

Description: Simplification of triple conjunction. (Contributed by NM, 9-Nov-2011)

Ref Expression
Assertion simp2r
|- ( ( ph /\ ( ps /\ ch ) /\ th ) -> ch )

Proof

Step Hyp Ref Expression
1 simpr
 |-  ( ( ps /\ ch ) -> ch )
2 1 3ad2ant2
 |-  ( ( ph /\ ( ps /\ ch ) /\ th ) -> ch )