Metamath Proof Explorer


Theorem simp32

Description: Simplification of doubly triple conjunction. (Contributed by NM, 17-Nov-2011)

Ref Expression
Assertion simp32
|- ( ( ph /\ ps /\ ( ch /\ th /\ ta ) ) -> th )

Proof

Step Hyp Ref Expression
1 simp2
 |-  ( ( ch /\ th /\ ta ) -> th )
2 1 3ad2ant3
 |-  ( ( ph /\ ps /\ ( ch /\ th /\ ta ) ) -> th )