Metamath Proof Explorer


Theorem slmd0cl

Description: The ring zero in a semimodule belongs to the ring base set. (Contributed by NM, 11-Jan-2014) (Revised by Mario Carneiro, 19-Jun-2014) (Revised by Thierry Arnoux, 1-Apr-2018)

Ref Expression
Hypotheses slmd0cl.f
|- F = ( Scalar ` W )
slmd0cl.k
|- K = ( Base ` F )
slmd0cl.z
|- .0. = ( 0g ` F )
Assertion slmd0cl
|- ( W e. SLMod -> .0. e. K )

Proof

Step Hyp Ref Expression
1 slmd0cl.f
 |-  F = ( Scalar ` W )
2 slmd0cl.k
 |-  K = ( Base ` F )
3 slmd0cl.z
 |-  .0. = ( 0g ` F )
4 1 slmdsrg
 |-  ( W e. SLMod -> F e. SRing )
5 2 3 srg0cl
 |-  ( F e. SRing -> .0. e. K )
6 4 5 syl
 |-  ( W e. SLMod -> .0. e. K )