Description: Multiplication of a sequence by 0 on the left. (Contributed by Mario Carneiro, 9-Sep-2016)
Ref | Expression | ||
---|---|---|---|
Assertion | smu02 | |- ( A C_ NN0 -> ( (/) smul A ) = (/) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0ss | |- (/) C_ NN0 |
|
2 | 1 | a1i | |- ( A C_ NN0 -> (/) C_ NN0 ) |
3 | id | |- ( A C_ NN0 -> A C_ NN0 ) |
|
4 | noel | |- -. k e. (/) |
|
5 | 4 | intnanr | |- -. ( k e. (/) /\ ( n - k ) e. A ) |
6 | 5 | a1i | |- ( ( A C_ NN0 /\ ( k e. NN0 /\ n e. NN0 ) ) -> -. ( k e. (/) /\ ( n - k ) e. A ) ) |
7 | 2 3 6 | smu01lem | |- ( A C_ NN0 -> ( (/) smul A ) = (/) ) |