Metamath Proof Explorer


Theorem snssd

Description: The singleton of an element of a class is a subset of the class (deduction form). (Contributed by Jonathan Ben-Naim, 3-Jun-2011)

Ref Expression
Hypothesis snssd.1
|- ( ph -> A e. B )
Assertion snssd
|- ( ph -> { A } C_ B )

Proof

Step Hyp Ref Expression
1 snssd.1
 |-  ( ph -> A e. B )
2 snssi
 |-  ( A e. B -> { A } C_ B )
3 1 2 syl
 |-  ( ph -> { A } C_ B )