Metamath Proof Explorer


Theorem snsssn

Description: If a singleton is a subset of another, their members are equal. (Contributed by NM, 28-May-2006)

Ref Expression
Hypothesis sneqr.1
|- A e. _V
Assertion snsssn
|- ( { A } C_ { B } -> A = B )

Proof

Step Hyp Ref Expression
1 sneqr.1
 |-  A e. _V
2 sssn
 |-  ( { A } C_ { B } <-> ( { A } = (/) \/ { A } = { B } ) )
3 1 snnz
 |-  { A } =/= (/)
4 3 neii
 |-  -. { A } = (/)
5 4 pm2.21i
 |-  ( { A } = (/) -> A = B )
6 1 sneqr
 |-  ( { A } = { B } -> A = B )
7 5 6 jaoi
 |-  ( ( { A } = (/) \/ { A } = { B } ) -> A = B )
8 2 7 sylbi
 |-  ( { A } C_ { B } -> A = B )