Description: If a singleton is a subset of another, their members are equal. (Contributed by NM, 28-May-2006)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | sneqr.1 | |- A e. _V | |
| Assertion | snsssn | |- ( { A } C_ { B } -> A = B ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | sneqr.1 | |- A e. _V | |
| 2 | sssn |  |-  ( { A } C_ { B } <-> ( { A } = (/) \/ { A } = { B } ) ) | |
| 3 | 1 | snnz |  |-  { A } =/= (/) | 
| 4 | 3 | neii |  |-  -. { A } = (/) | 
| 5 | 4 | pm2.21i |  |-  ( { A } = (/) -> A = B ) | 
| 6 | 1 | sneqr |  |-  ( { A } = { B } -> A = B ) | 
| 7 | 5 6 | jaoi |  |-  ( ( { A } = (/) \/ { A } = { B } ) -> A = B ) | 
| 8 | 2 7 | sylbi |  |-  ( { A } C_ { B } -> A = B ) |