Metamath Proof Explorer


Theorem sorpssin

Description: A chain of sets is closed under binary intersection. (Contributed by Mario Carneiro, 16-May-2015)

Ref Expression
Assertion sorpssin
|- ( ( [C.] Or A /\ ( B e. A /\ C e. A ) ) -> ( B i^i C ) e. A )

Proof

Step Hyp Ref Expression
1 simprl
 |-  ( ( [C.] Or A /\ ( B e. A /\ C e. A ) ) -> B e. A )
2 df-ss
 |-  ( B C_ C <-> ( B i^i C ) = B )
3 eleq1
 |-  ( ( B i^i C ) = B -> ( ( B i^i C ) e. A <-> B e. A ) )
4 2 3 sylbi
 |-  ( B C_ C -> ( ( B i^i C ) e. A <-> B e. A ) )
5 1 4 syl5ibrcom
 |-  ( ( [C.] Or A /\ ( B e. A /\ C e. A ) ) -> ( B C_ C -> ( B i^i C ) e. A ) )
6 simprr
 |-  ( ( [C.] Or A /\ ( B e. A /\ C e. A ) ) -> C e. A )
7 sseqin2
 |-  ( C C_ B <-> ( B i^i C ) = C )
8 eleq1
 |-  ( ( B i^i C ) = C -> ( ( B i^i C ) e. A <-> C e. A ) )
9 7 8 sylbi
 |-  ( C C_ B -> ( ( B i^i C ) e. A <-> C e. A ) )
10 6 9 syl5ibrcom
 |-  ( ( [C.] Or A /\ ( B e. A /\ C e. A ) ) -> ( C C_ B -> ( B i^i C ) e. A ) )
11 sorpssi
 |-  ( ( [C.] Or A /\ ( B e. A /\ C e. A ) ) -> ( B C_ C \/ C C_ B ) )
12 5 10 11 mpjaod
 |-  ( ( [C.] Or A /\ ( B e. A /\ C e. A ) ) -> ( B i^i C ) e. A )