Description: Obsolete proof of sratset as of 29-Oct-2024. Topology component of a subring algebra. (Contributed by Mario Carneiro, 4-Oct-2015) (Revised by Thierry Arnoux, 16-Jun-2019) (Proof modification is discouraged.) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypotheses | srapart.a | |- ( ph -> A = ( ( subringAlg ` W ) ` S ) ) |
|
srapart.s | |- ( ph -> S C_ ( Base ` W ) ) |
||
Assertion | sratsetOLD | |- ( ph -> ( TopSet ` W ) = ( TopSet ` A ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | srapart.a | |- ( ph -> A = ( ( subringAlg ` W ) ` S ) ) |
|
2 | srapart.s | |- ( ph -> S C_ ( Base ` W ) ) |
|
3 | df-tset | |- TopSet = Slot 9 |
|
4 | 9nn | |- 9 e. NN |
|
5 | 8lt9 | |- 8 < 9 |
|
6 | 5 | olci | |- ( 9 < 5 \/ 8 < 9 ) |
7 | 1 2 3 4 6 | sralemOLD | |- ( ph -> ( TopSet ` W ) = ( TopSet ` A ) ) |