Metamath Proof Explorer


Theorem sringcatALTV

Description: The restriction of the category of (unital) rings to the set of special ring homomorphisms is a category. (Contributed by AV, 19-Feb-2020) (New usage is discouraged.)

Ref Expression
Hypotheses srhmsubcALTV.s
|- A. r e. S r e. Ring
srhmsubcALTV.c
|- C = ( U i^i S )
srhmsubcALTV.j
|- J = ( r e. C , s e. C |-> ( r RingHom s ) )
Assertion sringcatALTV
|- ( U e. V -> ( ( RingCatALTV ` U ) |`cat J ) e. Cat )

Proof

Step Hyp Ref Expression
1 srhmsubcALTV.s
 |-  A. r e. S r e. Ring
2 srhmsubcALTV.c
 |-  C = ( U i^i S )
3 srhmsubcALTV.j
 |-  J = ( r e. C , s e. C |-> ( r RingHom s ) )
4 eqid
 |-  ( ( RingCatALTV ` U ) |`cat J ) = ( ( RingCatALTV ` U ) |`cat J )
5 1 2 3 srhmsubcALTV
 |-  ( U e. V -> J e. ( Subcat ` ( RingCatALTV ` U ) ) )
6 4 5 subccat
 |-  ( U e. V -> ( ( RingCatALTV ` U ) |`cat J ) e. Cat )