Description: Subclass relation for a restricted class. (Contributed by Glauco Siliprandi, 26-Jun-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | ssrab2f.1 | |- F/_ x A |
|
| Assertion | ssrab2f | |- { x e. A | ph } C_ A |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssrab2f.1 | |- F/_ x A |
|
| 2 | nfrab1 | |- F/_ x { x e. A | ph } |
|
| 3 | 2 1 | dfss3f | |- ( { x e. A | ph } C_ A <-> A. x e. { x e. A | ph } x e. A ) |
| 4 | rabidim1 | |- ( x e. { x e. A | ph } -> x e. A ) |
|
| 5 | 3 4 | mprgbir | |- { x e. A | ph } C_ A |