Description: If the restricting class of a restricted class abstraction is a subset of this restricted class abstraction, it is equal to this restricted class abstraction. (Contributed by Alexander van der Vekens, 31-Dec-2017)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ssrabeq | |- ( V C_ { x e. V | ph } <-> V = { x e. V | ph } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssrab2 | |- { x e. V | ph } C_ V |
|
| 2 | 1 | biantru | |- ( V C_ { x e. V | ph } <-> ( V C_ { x e. V | ph } /\ { x e. V | ph } C_ V ) ) |
| 3 | eqss | |- ( V = { x e. V | ph } <-> ( V C_ { x e. V | ph } /\ { x e. V | ph } C_ V ) ) |
|
| 4 | 2 3 | bitr4i | |- ( V C_ { x e. V | ph } <-> V = { x e. V | ph } ) |