Metamath Proof Explorer


Theorem sticl

Description: [ 0 , 1 ] closure of the value of a state. (Contributed by Mario Carneiro, 23-Dec-2013) (New usage is discouraged.)

Ref Expression
Assertion sticl
|- ( S e. States -> ( A e. CH -> ( S ` A ) e. ( 0 [,] 1 ) ) )

Proof

Step Hyp Ref Expression
1 isst
 |-  ( S e. States <-> ( S : CH --> ( 0 [,] 1 ) /\ ( S ` ~H ) = 1 /\ A. x e. CH A. y e. CH ( x C_ ( _|_ ` y ) -> ( S ` ( x vH y ) ) = ( ( S ` x ) + ( S ` y ) ) ) ) )
2 1 simp1bi
 |-  ( S e. States -> S : CH --> ( 0 [,] 1 ) )
3 ffvelrn
 |-  ( ( S : CH --> ( 0 [,] 1 ) /\ A e. CH ) -> ( S ` A ) e. ( 0 [,] 1 ) )
4 3 ex
 |-  ( S : CH --> ( 0 [,] 1 ) -> ( A e. CH -> ( S ` A ) e. ( 0 [,] 1 ) ) )
5 2 4 syl
 |-  ( S e. States -> ( A e. CH -> ( S ` A ) e. ( 0 [,] 1 ) ) )