Metamath Proof Explorer


Theorem struct2grstr

Description: A graph represented as an extensible structure with vertices as base set and indexed edges is actually an extensible structure. (Contributed by AV, 23-Nov-2020)

Ref Expression
Hypothesis struct2grvtx.g
|- G = { <. ( Base ` ndx ) , V >. , <. ( .ef ` ndx ) , E >. }
Assertion struct2grstr
|- G Struct <. ( Base ` ndx ) , ( .ef ` ndx ) >.

Proof

Step Hyp Ref Expression
1 struct2grvtx.g
 |-  G = { <. ( Base ` ndx ) , V >. , <. ( .ef ` ndx ) , E >. }
2 baseltedgf
 |-  ( Base ` ndx ) < ( .ef ` ndx )
3 edgfndxnn
 |-  ( .ef ` ndx ) e. NN
4 1 2 3 2strstr1
 |-  G Struct <. ( Base ` ndx ) , ( .ef ` ndx ) >.