| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 2times |  |-  ( A e. CC -> ( 2 x. A ) = ( A + A ) ) | 
						
							| 2 | 1 | oveq2d |  |-  ( A e. CC -> ( A - ( 2 x. A ) ) = ( A - ( A + A ) ) ) | 
						
							| 3 |  | id |  |-  ( A e. CC -> A e. CC ) | 
						
							| 4 | 3 3 | addcld |  |-  ( A e. CC -> ( A + A ) e. CC ) | 
						
							| 5 | 3 4 | negsubd |  |-  ( A e. CC -> ( A + -u ( A + A ) ) = ( A - ( A + A ) ) ) | 
						
							| 6 | 3 3 | negdid |  |-  ( A e. CC -> -u ( A + A ) = ( -u A + -u A ) ) | 
						
							| 7 | 6 | oveq2d |  |-  ( A e. CC -> ( A + -u ( A + A ) ) = ( A + ( -u A + -u A ) ) ) | 
						
							| 8 |  | negcl |  |-  ( A e. CC -> -u A e. CC ) | 
						
							| 9 | 3 8 8 | addassd |  |-  ( A e. CC -> ( ( A + -u A ) + -u A ) = ( A + ( -u A + -u A ) ) ) | 
						
							| 10 |  | negid |  |-  ( A e. CC -> ( A + -u A ) = 0 ) | 
						
							| 11 | 10 | oveq1d |  |-  ( A e. CC -> ( ( A + -u A ) + -u A ) = ( 0 + -u A ) ) | 
						
							| 12 | 8 | addlidd |  |-  ( A e. CC -> ( 0 + -u A ) = -u A ) | 
						
							| 13 | 11 12 | eqtrd |  |-  ( A e. CC -> ( ( A + -u A ) + -u A ) = -u A ) | 
						
							| 14 | 7 9 13 | 3eqtr2d |  |-  ( A e. CC -> ( A + -u ( A + A ) ) = -u A ) | 
						
							| 15 | 2 5 14 | 3eqtr2d |  |-  ( A e. CC -> ( A - ( 2 x. A ) ) = -u A ) |