| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eqid |
|- ( Vtx ` S ) = ( Vtx ` S ) |
| 2 |
|
eqid |
|- ( Vtx ` G ) = ( Vtx ` G ) |
| 3 |
|
eqid |
|- ( iEdg ` S ) = ( iEdg ` S ) |
| 4 |
|
eqid |
|- ( iEdg ` G ) = ( iEdg ` G ) |
| 5 |
|
eqid |
|- ( Edg ` S ) = ( Edg ` S ) |
| 6 |
1 2 3 4 5
|
subgrprop2 |
|- ( S SubGraph G -> ( ( Vtx ` S ) C_ ( Vtx ` G ) /\ ( iEdg ` S ) C_ ( iEdg ` G ) /\ ( Edg ` S ) C_ ~P ( Vtx ` S ) ) ) |
| 7 |
|
funss |
|- ( ( iEdg ` S ) C_ ( iEdg ` G ) -> ( Fun ( iEdg ` G ) -> Fun ( iEdg ` S ) ) ) |
| 8 |
7
|
3ad2ant2 |
|- ( ( ( Vtx ` S ) C_ ( Vtx ` G ) /\ ( iEdg ` S ) C_ ( iEdg ` G ) /\ ( Edg ` S ) C_ ~P ( Vtx ` S ) ) -> ( Fun ( iEdg ` G ) -> Fun ( iEdg ` S ) ) ) |
| 9 |
6 8
|
syl |
|- ( S SubGraph G -> ( Fun ( iEdg ` G ) -> Fun ( iEdg ` S ) ) ) |
| 10 |
9
|
impcom |
|- ( ( Fun ( iEdg ` G ) /\ S SubGraph G ) -> Fun ( iEdg ` S ) ) |