| Step |
Hyp |
Ref |
Expression |
| 1 |
|
submmnd.h |
|- H = ( M |`s S ) |
| 2 |
|
submrcl |
|- ( S e. ( SubMnd ` M ) -> M e. Mnd ) |
| 3 |
|
eqid |
|- ( Base ` M ) = ( Base ` M ) |
| 4 |
|
eqid |
|- ( 0g ` M ) = ( 0g ` M ) |
| 5 |
3 4 1
|
issubm2 |
|- ( M e. Mnd -> ( S e. ( SubMnd ` M ) <-> ( S C_ ( Base ` M ) /\ ( 0g ` M ) e. S /\ H e. Mnd ) ) ) |
| 6 |
2 5
|
syl |
|- ( S e. ( SubMnd ` M ) -> ( S e. ( SubMnd ` M ) <-> ( S C_ ( Base ` M ) /\ ( 0g ` M ) e. S /\ H e. Mnd ) ) ) |
| 7 |
6
|
ibi |
|- ( S e. ( SubMnd ` M ) -> ( S C_ ( Base ` M ) /\ ( 0g ` M ) e. S /\ H e. Mnd ) ) |
| 8 |
7
|
simp3d |
|- ( S e. ( SubMnd ` M ) -> H e. Mnd ) |